Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family.
نویسندگان
چکیده
It has been known for a long time that the yeast Saccharomyces cerevisiae can assimilate alpha-methylglucopyranoside and isomaltose. We here report the identification of 5 genes (YGR287c, YIL172c, YJL216c, YJL221c and YOL157c), which, similar to the SUCx, MALx, or HXTx multigene families, are located in the subtelomeric regions of different chromosomes. They share high nucleotide sequence identities between themselves (66-100%) and with the MALx2 genes (63-74%). Comparison of their amino acid sequences underlined a substitution of threonine by valine in region II, one of the four highly conserved regions of the alpha-glucosidase family. This change was previously shown to be sufficient to discriminate alpha-1,4- to alpha-1,6-glucosidase activity in YGR287c (Yamamoto, K., Nakayama, A., Yamamoto, Y., and Tabata, S. (2004) Eur. J. Biochem. 271, 3414-3420). We showed that each of these five genes encodes a protein with alpha-glucosidase activity on isomaltose, and we therefore renamed these genes IMA1 to IMA5 for IsoMAltase. Our results also illustrated that sequence polymorphisms among this family led to interesting variability of gene expression patterns and of catalytic efficiencies on different substrates, which altogether should account for the absence of functional redundancy for growth on isomaltose. Indeed, deletion studies revealed that IMA1/YGR287c encodes the major isomaltase and that growth on isomaltose required the presence of AGT1, which encodes an alpha-glucoside transporter. Expressions of IMA1 and IMA5/YJL216c were strongly induced by maltose, isomaltose, and alpha-methylglucopyranoside, in accordance with their regulation by the Malx3p-transcription system. The physiological relevance of this IMAx multigene family in S. cerevisiae is discussed.
منابع مشابه
Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae
The yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6) disaccharides isomaltose and palatinose, with Michaëlis-Menten kinetics...
متن کاملCloning and characterization of a Saccharomyces cerevisiae gene encoding a new member of the ubiquitin-conjugating protein family.
Ubiquitin-conjugating enzymes (E2s), which participate in the post-translational conjugation of ubiquitin to proteins, are encoded by a multigene family in the yeast Saccharomyces cerevisiae. E2s function in a variety of cellular activities including intracellular proteolysis, DNA repair, sporulation, and cell cycle traverse. Here, we report the cloning and characterization of a new member of t...
متن کاملCharacterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کاملCharacterization of Encapsulated Berberine in Yeast Cells of Saccharomyces cerevisiae
Berberine was loaded in yeast cells of Saccharomyces cerevisiaeas a novel pharmaceutical carrier to improve the treatment ofmany diseases. The yeast-encapsulated active materialsshowedhigh stability and bioavailability due to the enhanced solubility and sustained releasing. In this study, different characteristics of prepared berberine loaded yeast cells (loading capacity, release kinetic order...
متن کاملGreen synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 35 شماره
صفحات -
تاریخ انتشار 2010